2014 DOE Vehicle Technologies Program Review

Washington, D.C. June 19th, 2014

Claus Schnabel (PI)

Award: DE-EE0005975 Project ID: ACE091

Sensors and Ignition Gasoline Systems, Robert Bosch LLC

Project Overview

Target & Barriers

Target is to develop an Intake Air Oxygen (IAO2) sensor which directly and accurately measures the oxygen concentration in the intake manifold and demonstrate its potential.

Barriers are

- Inadequate data on requirements and risks concerning sensing with IAO2
- Control Strategies utilizing IAO2 sensing

US Department of Energy

Robert Bosch LLC

Clemson University

Oak Ridge National Lab

Budget

- \$4,446,686 Total Project Budget \$2,750,000 - DOE Funding \$1,696,686 - Partner Funding
- \$1,781,072 Actual expenditure (as of 12/2013)

\$1,096,084 – DOE Funding \$684,988 – Partner Funding

\$1,011,698 - Partner Funding

\$2,665,614 - Remaining (as of 12/2013) \$1,653,916 - DOE Funding

Timeline 2014 -Phase 2

Objectives and Relevance

Objectives

- Develop an Intake Air Oxygen (IAO2) sensor which directly and accurately measures the oxygen concentration in the intake manifold
- Demonstrate the potential of the sensor in combination with system adaptation and cEGR control strategies in a target engine application

Relevance of cEGR

- cEGR enables improved fuel economy in most driving conditions (on and off cycle) supporting the mainstream trend of Downsizing
- Improvement of up to 5% in engine peak thermal efficiency
- Other future combustion technologies will utilize cEGR

Relevance of IAO2

IA02 aims at providing a significant improvement in control accuracy of cEGR to maximize the fuel economy potential of the system

Approach - REGIS

Development of an IAO2 sensor for EGR control and demonstration of benefits

Collaborators and Partners

BOSCH

- Derivation of requirements
- ➤ Development and Validation Sensor
- ➤ Built of Sensor Prototypes
- ➤ Validation Control Strategy

Funded by DOE 2110 T USD Own Funding 1582 T USD

WCLEMSON

- > System level evaluation cEGR
- ➤ Control Development
- Proof of Potential

Funded by DOE 460 T USD Own Funding 115 T USD

- ➤ Advanced testing support
- > Thermodynamics cEGR

Funded by DOE 180 T USD Own Funding 0 T USD

Milestones & Summary of Technical Accomplishments

Sensor Development

- ✓ Baseline sensor characterization
- ✓ Improve sensor mounting and ECU connector design; build prototypes
- Sensor development for functional robustness over lifetime; build prototypes
- Concept for 2nd generation IAO2 element

System Evaluation

- ✓ Baseline system characterization (engine testing and simulation)
- ✓ Assessment of system risks and requirements for sensor (intake conditions, controls)
- ✓ Investigate impact of sensor location on sensor performance and requirements

Control Development

- ✓ EGR estimation algorithm development
- Control-oriented model for in-cylinder EGR prediction

Demonstration of sensing benefits

- ✓ Engine simulation to demonstrate sensor benefits
- Demonstration of improved sensor functionality and robustness
- Demonstration of potential for fuel economy improvement and emissions performance with IAO2 compared to a model-based EGR control strategy using rapid prototyping

IAO2 Motivation

Region with small pressure differential across EGR valve (pressure ratio is near unity)

Sensing Alternatives for EGR Determination

	IAO2	Δр
Accuracy (long term)		
HW Robustness		
Dynamic		
Cost		
Risk		
Calibration effort		

- Near unity pressure ratio over EGR valve in region with greatest impact on fuel economy
- Near unity pressure ratio with LP-EGR is challenging for flow modeling and controls with differential pressures sensor

IAO2 is a key enabler for maximizing the benefits of LP cooled EGR

IAO2 Control Development

IAO2 Accuracy

Multi-faceted approach needed to meet desired accuracy targets.

IAO2 mounting post-compressor is the best solution for durability, functionality and power consumption

Technical Risk Assessment

Technical / technology		
1	Sensor not robust for intake	
2	Other methods for controlling EGR are better	
3	Sensor can lead to ignition of intake gas	
Development risk		
4	Sensor accuracy not sufficient	
5	Sensor costs higher than estimated	
Competencies / Know-how		
6	Unable to package sensor for intake	

Ignition of intake gas is key remaining risk after Phase 1

Ignition Study at Oak Ridge National Lab 150

Derived Sensor Temperature (C)

Circles = E0 Gasoline
Square = 100% non-denatured ethanol

Blue, empty = no ignition (<10C Delta Gas T)
Red, filled = ignition (>10C Delta Gas T)

Temperature range of new sensor

Result

Ignition can occur at elevated gas temperatures and with aged sensor

Next Steps

- > FMEA
- Study to understand ignition risk for failure modes identified by FMEA
- Identify measures in sensor design to arrest flame kernels
- Propagate engine design with purge entry upstream of sensor for critical operation points

Choice of Sensor Concept

Sensor Concept:

- > Use single cell wideband element
- Change to direct connector
- > Find high commonality to existing production
- > Optimize protection tube for intake application

Choice of Sensing Element

- > High water load robustness
- Stable in lean conditions
- Low pressure dependency
- High soot robustness (optimized for Diesel engines)
- Strong heater optimized for Diesel engines
- Stabilized sensor temperature at high, cold flow rates
- Flexibility regarding protection tube design
- Single cell sensor : Compact 4 wire sensor concept

Free choice of sensor connector

Coating for thermal shock protection

First Build Thermal Management

Thermal mapping at rated power conditions

Results from thermal mapping of component

- Component temperatures are in acceptable range
- Recommendation for calibration derived

Development goal for first build robustness of plastic connector/ housing achieved

Validation Results of First Build

Sealing of plastic connector to metal housing after thermal aging achieved

Protection Tube Optimization - Tool Box

Protection Tube (PT) Optimization

Bosch Existing

Directional A1.0

Directional B1.0

Directional B1.2

Benchmark Patent

Heater Power (W)

Results from protection tube optimization

> PT performance has increased from optimization of feature parameters.

Target to exceed performance of benchmark patent was achieved.

Future Directions REGIS

Sensor Development

- Develop and demonstrate sensor functional robustness over lifetime
- Build production intent prototypes
- Investigate concept for 2nd generation IAO2 element

System Evaluation

- > Understand risk in vehicle for ignition
- > Understand signal off-set caused by HC's found in intake during vehicle operation

Control Development

Control-oriented model for in-cylinder EGR prediction

Demonstration of sensing benefits

- Demonstration of improved sensor functionality and robustness
- Demonstration of potential for fuel economy improvement and emissions performance achieved with IAO2 compared to a model-based EGR control strategy using rapid prototyping

Summary REGIS

Relevance of Intake Air Oxygen (IAO2) sensing

- > Directly and accurately measures the oxygen concentration in the intake manifold
- > Enables accurate and robust EGR control for future engine concepts utilizing cEGR

Approach

- Develop requirements
- Design sensor solutions
- Develop robust cEGR controls

Tools

- Targeted engines
- > Flow benches
- Simulation studies

Technical Accomplishments

- Developed and demonstrated improved sensor mounting and ECU connector design
- ✓ Identified sensor design for improved thermal shock robustness and response time
- Assessed system risks and requirements for sensor (intake conditions, controls)
- ✓ Identified sensor location for best sensor performance and cEGR control
- Developed cEGR estimation algorithm

Future Work

- Develop and demonstrate sensor functional robustness over lifetime
- Investigate concept for 2nd generation IAO2 element
- > Develop control-oriented model for in-cylinder EGR prediction
- Demonstrate sensing benefits

Technical Back Up slides

LSU IM Accuracy

High Accuracy Potential

Ability to tolerate large errors in system metering

- > Production part tolerance
- > Aging of components
- Modeling errors in calibration

Long term adaptation possible over lifetime

Predictable Cross-Sensitivity

Ignition Study

- Introduce aerosolized fuel/air mixture to REGIS sensor
 - Fixed gas velocity (slow) ~1 m/s
 - Fixed air/fuel ratio (stoichiometric)
 - Fixed mixture temperature (50 -80 °C)
 - Two fuels: E10 gasoline blend plus E85 blend
- Vary sensor element temperature
- Detect ignition with thermocouple measurement of gas temperature downstream of REGIS sensor
- Realization
 - Use of air assisted atomizer nozzle w/ preheated air
 - Air flow control using a mass flow controller
 - Fuel flow control using a syringe pump
 - Heating of air and surfaces around the injector to maximize fuel vaporization
 minimize condensation on surfaces

Protection Tube Optimization

Protection tube optimization achieved targets for sensor performance in engine part and medium load conditions

First Build Thermal Management

Thermal mapping for hot soak showed component temperature in acceptable range

First Build and Validation

First build completed in December 2013

Mechanical Testing:

- Sine Vibration
- Wideband Vibration
- Vibrational Resonance
- Mechanical Shock
- Drop
- Pendulum Swing

Environmental Testing:

- Hot Soak
- Cold Soak
- Thermal Cycling
- Salt Water Submergence
- High Pressure Water Spray

Purpose:

- Ensure sealing of components
- > Mechanical robustness of external and internal connections
- Pre- and post- functionality of sensor

Results:

No design related failures

First build validation completed in April 2014

